W redhat

INTRODUCING

STORAGE INSTANTIATION DAEMON

PETER RAJNOHA <PRAJNOHA@REDHAT.COM>
DEVCONF.CZ, JANUARY 27 2019, BRNO




UEVENTS
OVERVIEW

USER SPACE ™,
/sys/.../uesent NETLINK

KERNEL SPACE



UEVENTS

e uevents are event notifications that userspace can monitor
both kernel and userspace can cause uevents to get generated

m kernel multicast uevents
o genuine
o synthesized (writing to /sys/.../uevent file)
m userspace multicast uevents
m yserspace unicast uevents
uevent environment in KEY=VALUE text format

= ACTION, DEVPATH, SUBSYSTEM, SEQNUM
= more variables added by driver core, subsystems, drivers...

8 uevent action types:

= ADD, CHANGE, REMOVE, MOVE
= ONLINE, OFFLINE, BIND, UNBIND

all uevents sent through netlink socket



UDEV

e udev daemon in userspace to support dynamic device management
e monitoring netlink socket for uevents (kernel uevent type)
e processing udev rules

m key=value matching/writing

m sysfs property matching/writing

m sysctl parameter matching/writing

= tag matching/creation

m executing builtin or external commands, collecting output
m setting device node permissions

= creating symlinks to device nodes

e storing records in udev database

m records per device
= subset of key=value environment sent with uevent
m Kkey=value pairs added by rules

e regenerarating uevents including key=value pairs resulted

from udev rule processing (udev uevent type)
e others able to monitor kernel and/or udev uevents



UEVENTS + UDEV

EXTERNAL COMMANDS

UDEVD WORKER

BUILTIN COMMANDS
UDEV RULES

udev uevent

UDEV DB
/run/udev (=]

USER SPACE ™,

KERNEL SPACE

synthesized or genuine
kernel uevent



STORAGE SPECIFICS

e the ideal: one single-level device usable after ADD uevent
e the reality: device usable after further actions

= jnitialization sequence
= multistep activation scheme
= grouping
= |ayering
e devices may contain signatures/metadata/external configuration
that define the next layer in the stack

blkid scan for the majority

multipath -c to detect multipath components
detached header location for LUKS encrypted devices
further additional scans by various subsystems



PROBLEMS WITH UDEV
WHILE HANDLING STORAGE DEVICES

e overloaded uevent action type - just a CHANGE for lots of notifications

e restricted udev rule language

e calling external commands to make (even simple) decisions

e all rules and keys are global, any rule can overwrite values for various keys

e accessing udev database from udev rules is clunky and error-prone

e problems with identification of current state

e no direct support for grouping

e no standard on marking device as ready/usable, public, private, temporarily private
e amount of work done within udevd context may not be appropriate

e udevd worker process timeout causes the process to get killed without further fallback
e scheduling separate work requires complex synchronization scheme

UDEV IS NOT PRIMARILY DESIGNED FOR THIS!
IT'S DESIGNED TO HANDLE NODES AND SYMLINKS IN /DEV AND THEIR PERMISSIONS
WHICH IT DOES JUST FINE
WE NEED A BIT DIFFERENT APPROACH HERE FOR OUR NEEDS!



CHANGES

BUILTIN
UDEV

Judev uevent

UDEV DB
/run/udev (=]

1:1 uevent

USER £

KERNEL

synthesized or genuine
kernel uevent



CHANGES

UDE\ D WOR <ER

BUILTIN.COMMAND
UDEV. RULES

sid udev uevent

UDEV DB
/run/udev (=)

1:1 uevent UDEVD

SYNTH_UUID = UUID
SYNTH_ARG_KEY = VALUE
ACTION UUID KEY=VALUE ...

USER SPACE ™,

NETLINK

KERNEL SPACE

synthesized or genuine
kernel uevent




STORAGE INSTANTIATION
DAEMON AND COMPONENTS

e siddaemon

= |ayered on top of udev
= executes storage-specific uevent handling and processing
= keeps its own database

e udev builtin command
= bridge between udev and SID with subcommands:
o sid active
o returns active, inactive, incompatible
o sid identify
o relays uevent with environment to SID

o requests execution of identification and related routines
o returns KEY=VALUE results for use in udev rules or to store in udev db

o sid checkpoint <checkpoint_name> [<key> ...]
o sid version

e library interface

= access SID's information store
= subscribe to SID notifications

e sidctlcommand line interface
= control and access SID and its information store



STORAGE INSTANTIATION
DAEMON IDENTIFY STAGES

STAGE "A" STAGE "B"

SID WORKER

SID DB
snapshot

udev
sid sid JEHE
identify chekpoint
uevent & [




SID DAEMON
IDENTIFY - STAGE "A"




SID DAEMON
IDENTIFY - STAGE "B




SID DAEMON
DATABASE

e key-value (KV) database with various backends
e value types
= simple
= vector
e snapshot separation
e delta synchronization of vector values
e separate key namespaces

= KV_NS_UDEYV (import/export from/to udev)

m KV_NS_GLOBAL (visible globally)

= KV_NS_MODULE (visible only in specific module)

m KV_NS_DEVICE (visible only when processing specific device)

e per-module protection flags

= KV_PROTECTED (originating module can read-write, others read-only)
» KV_PRIVATE (originating module can read-write, others unable to access)
m KV_RESERVED (originating module reserves, others can't take over)

e persistence
= KV_PERSISTENT (persist record for next use)



QUESTIONS ?



github: https://github.com/prajnoha/sid

freenode: prajnoha on #lvm

email: prajnoha@redhat.com


https://github.com/prajnoha/sid
https://webchat.freenode.net/

THANK YOU!

W




