

INTRODUCING

STORAGE INSTANTIATION DAEMON

PETER RAJNOHA <PRAJNOHA@REDHAT.COM>
DEVCONF.CZ, JANUARY 27 2019, BRNO

USER SPACE

USER SPACE

NETLINK

• uevents are event notifications that userspace can monitor

- uevents are event notifications that userspace can monitor
- both kernel and userspace can cause uevents to get generated
 - **kernel multicast** uevents
 - o genuine
 - synthesized (writing to /sys/.../uevent file)
 - *userspace multicast* uevents
 - *userspace unicast* uevents

- uevents are event notifications that userspace can monitor
- both kernel and userspace can cause uevents to get generated
 - **kernel multicast** uevents
 - o genuine
 - synthesized (writing to /sys/.../uevent file)
 - userspace multicast uevents
 - userspace unicast uevents
- uevent environment in KEY=VALUE text format
 - ACTION, DEVPATH, SUBSYSTEM, SEQNUM
 - more variables added by driver core, subsystems, drivers...

- uevents are event notifications that userspace can monitor
- both kernel and userspace can cause uevents to get generated
 - **kernel multicast** uevents
 - genuine
 - synthesized (writing to /sys/.../uevent file)
 - *userspace multicast* uevents
 - userspace unicast uevents
- uevent environment in KEY=VALUE text format
 - ACTION, DEVPATH, SUBSYSTEM, SEQNUM
 - more variables added by driver core, subsystems, drivers...
- 8 uevent action types:
 - ADD, CHANGE, REMOVE, MOVE
 - ONLINE, OFFLINE, BIND, UNBIND

- uevents are event notifications that userspace can monitor
- both kernel and userspace can cause uevents to get generated
 - **kernel multicast** uevents
 - o genuine
 - synthesized (writing to /sys/.../uevent file)
 - *userspace multicast* uevents
 - userspace unicast uevents
- uevent environment in KEY=VALUE text format
 - ACTION, DEVPATH, SUBSYSTEM, SEQNUM
 - more variables added by driver core, subsystems, drivers...
- 8 uevent action types:
 - ADD, CHANGE, REMOVE, MOVE
 - ONLINE, OFFLINE, BIND, UNBIND
- all uevents sent through netlink socket

• udev daemon in userspace to support dynamic device management

- udev daemon in userspace to support dynamic device management
- monitoring netlink socket for uevents (kernel uevent type)

- udev daemon in userspace to support dynamic device management
- monitoring netlink socket for uevents (kernel uevent type)
- processing udev rules
 - key=value matching/writing
 - sysfs property matching/writing
 - sysctl parameter matching/writing
 - tag matching/creation
 - executing builtin or external commands, collecting output
 - setting device node permissions
 - creating symlinks to device nodes

- udev daemon in userspace to support dynamic device management
- monitoring netlink socket for uevents (kernel uevent type)
- processing udev rules
 - key=value matching/writing
 - sysfs property matching/writing
 - sysctl parameter matching/writing
 - tag matching/creation
 - executing builtin or external commands, collecting output
 - setting device node permissions
 - creating symlinks to device nodes
- storing records in udev database
 - records per device
 - subset of key=value environment sent with uevent
 - key=value pairs added by rules

- udev daemon in userspace to support dynamic device management
- monitoring netlink socket for uevents (kernel uevent type)
- processing udev rules
 - key=value matching/writing
 - sysfs property matching/writing
 - sysctl parameter matching/writing
 - tag matching/creation
 - executing builtin or external commands, collecting output
 - setting device node permissions
 - creating symlinks to device nodes
- storing records in udev database
 - records per device
 - subset of key=value environment sent with uevent
 - key=value pairs added by rules
- regenerarating uevents including key=value pairs resulted from udev rule processing (udev uevent type)

- udev daemon in userspace to support dynamic device management
- monitoring netlink socket for uevents (kernel uevent type)
- processing udev rules
 - key=value matching/writing
 - sysfs property matching/writing
 - sysctl parameter matching/writing
 - tag matching/creation
 - executing builtin or external commands, collecting output
 - setting device node permissions
 - creating symlinks to device nodes
- storing records in udev database
 - records per device
 - subset of key=value environment sent with uevent
 - key=value pairs added by rules
- regenerating uevents including key=value pairs resulted from udev rule processing (udev uevent type)
- others able to monitor kernel and/or udev uevents

USER SPACE

USER SPACE

NETLINK

• the ideal: one single-level device usable after ADD uevent

- the ideal: one single-level device usable after ADD uevent
- the reality: device usable after further actions
 - initialization sequence
 - multistep activation scheme
 - grouping
 - layering

- the ideal: one single-level device usable after ADD uevent
- the reality: device usable after further actions
 - initialization sequence
 - multistep activation scheme
 - grouping
 - layering
- devices may contain signatures/metadata/external configuration that define the next layer in the stack
 - blkid scan for the majority
 - *multipath -c* to detect multipath components
 - detached header location for LUKS encrypted devices
 - further additional scans by various subsystems

PROBLEMS WITH UDEV WHILE HANDLING STORAGE DEVICES

• overloaded uevent action type - just a CHANGE for lots of notifications

- overloaded uevent action type just a CHANGE for lots of notifications
- restricted udev rule language

- overloaded uevent action type just a CHANGE for lots of notifications
- restricted udev rule language
- calling external commands to make (even simple) decisions

- overloaded uevent action type just a CHANGE for lots of notifications
- restricted udev rule language
- calling external commands to make (even simple) decisions
- all rules and keys are global, any rule can overwrite values for various keys

- overloaded uevent action type just a CHANGE for lots of notifications
- restricted udev rule language
- calling external commands to make (even simple) decisions
- all rules and keys are global, any rule can overwrite values for various keys
- accessing udev database from udev rules is clunky and error-prone

- overloaded uevent action type just a CHANGE for lots of notifications
- restricted udev rule language
- calling external commands to make (even simple) decisions
- all rules and keys are global, any rule can overwrite values for various keys
- accessing udev database from udev rules is clunky and error-prone
- problems with identification of current state

- overloaded uevent action type just a CHANGE for lots of notifications
- restricted udev rule language
- calling external commands to make (even simple) decisions
- all rules and keys are global, any rule can overwrite values for various keys
- accessing udev database from udev rules is clunky and error-prone
- problems with identification of current state
- no direct support for grouping

- overloaded uevent action type just a CHANGE for lots of notifications
- restricted udev rule language
- calling external commands to make (even simple) decisions
- all rules and keys are global, any rule can overwrite values for various keys
- accessing udev database from udev rules is clunky and error-prone
- problems with identification of current state
- no direct support for grouping
- no standard on marking device as ready/usable, public, private, temporarily private

- overloaded uevent action type just a CHANGE for lots of notifications
- restricted udev rule language
- calling external commands to make (even simple) decisions
- all rules and keys are global, any rule can overwrite values for various keys
- accessing udev database from udev rules is clunky and error-prone
- problems with identification of current state
- no direct support for grouping
- no standard on marking device as ready/usable, public, private, temporarily private
- amount of work done within udevd context may not be appropriate

- overloaded uevent action type just a CHANGE for lots of notifications
- restricted udev rule language
- calling external commands to make (even simple) decisions
- all rules and keys are global, any rule can overwrite values for various keys
- accessing udev database from udev rules is clunky and error-prone
- problems with identification of current state
- no direct support for grouping
- no standard on marking device as ready/usable, public, private, temporarily private
- amount of work done within udevd context may not be appropriate
- udevd worker process timeout causes the process to get killed without further fallback

- overloaded uevent action type just a CHANGE for lots of notifications
- restricted udev rule language
- calling external commands to make (even simple) decisions
- all rules and keys are global, any rule can overwrite values for various keys
- accessing udev database from udev rules is clunky and error-prone
- problems with identification of current state
- no direct support for grouping
- no standard on marking device as ready/usable, public, private, temporarily private
- amount of work done within udevd context may not be appropriate
- udevd worker process timeout causes the process to get killed without further fallback
- scheduling separate work requires complex synchronization scheme

- overloaded uevent action type just a CHANGE for lots of notifications
- restricted udev rule language
- calling external commands to make (even simple) decisions
- all rules and keys are global, any rule can overwrite values for various keys
- accessing udev database from udev rules is clunky and error-prone
- problems with identification of current state
- no direct support for grouping
- no standard on marking device as ready/usable, public, private, temporarily private
- amount of work done within udevd context may not be appropriate
- udevd worker process timeout causes the process to get killed without further fallback
- scheduling separate work requires complex synchronization scheme

UDEV IS NOT PRIMARILY DESIGNED FOR THIS!

- overloaded uevent action type just a CHANGE for lots of notifications
- restricted udev rule language
- calling external commands to make (even simple) decisions
- all rules and keys are global, any rule can overwrite values for various keys
- accessing udev database from udev rules is clunky and error-prone
- problems with identification of current state
- no direct support for grouping
- no standard on marking device as ready/usable, public, private, temporarily private
- amount of work done within udevd context may not be appropriate
- udevd worker process timeout causes the process to get killed without further fallback
- scheduling separate work requires complex synchronization scheme

UDEV IS NOT PRIMARILY DESIGNED FOR THIS!

IT'S DESIGNED TO HANDLE NODES AND SYMLINKS IN /DEV AND THEIR PERMISSIONS

- overloaded uevent action type just a CHANGE for lots of notifications
- restricted udev rule language
- calling external commands to make (even simple) decisions
- all rules and keys are global, any rule can overwrite values for various keys
- accessing udev database from udev rules is clunky and error-prone
- problems with identification of current state
- no direct support for grouping
- no standard on marking device as ready/usable, public, private, temporarily private
- amount of work done within udevd context may not be appropriate
- udevd worker process timeout causes the process to get killed without further fallback
- scheduling separate work requires complex synchronization scheme

UDEV IS NOT PRIMARILY DESIGNED FOR THIS!

IT'S DESIGNED TO HANDLE NODES AND SYMLINKS IN /DEV AND THEIR PERMISSIONS

WHICH IT DOES JUST FINE

- overloaded uevent action type just a CHANGE for lots of notifications
- restricted udev rule language
- calling external commands to make (even simple) decisions
- all rules and keys are global, any rule can overwrite values for various keys
- accessing udev database from udev rules is clunky and error-prone
- problems with identification of current state
- no direct support for grouping
- no standard on marking device as ready/usable, public, private, temporarily private
- amount of work done within udevd context may not be appropriate
- udevd worker process timeout causes the process to get killed without further fallback
- scheduling separate work requires complex synchronization scheme

UDEV IS NOT PRIMARILY DESIGNED FOR THIS!

IT'S DESIGNED TO HANDLE NODES AND SYMLINKS IN /DEV AND THEIR PERMISSIONS

WHICH IT DOES JUST FINE

WE NEED A BIT DIFFERENT APPROACH HERE FOR OUR NEEDS!

- overloaded uevent action type just a CHANGE for lots of notifications
- restricted udev rule language
- calling external commands to make (even simple) decisions
- all rules and keys are global, any rule can overwrite values for various keys
- accessing udev database from udev rules is clunky and error-prone
- problems with identification of current state
- no direct support for grouping
- no standard on marking device as ready/usable, public, private, temporarily private
- amount of work done within udevd context may not be appropriate
- udevd worker process timeout causes the process to get killed without further fallback
- scheduling separate work requires complex synchronization scheme

UDEV IS NOT PRIMARILY DESIGNED FOR THIS!

IT'S DESIGNED TO HANDLE NODES AND SYMLINKS IN /DEV AND THEIR PERMISSIONS

WHICH IT DOES JUST FINE

WE NEED A BIT DIFFERENT APPROACH HERE FOR OUR NEEDS!

kernel uevent

synthesized or genuine kernel uevent

10

STORAGE INSTANTIATION DAEMON AND COMPONENTS

sid daemon

- layered on top of udev
- executes storage-specific uevent handling and processing
- keeps its own database

sid daemon

- layered on top of udev
- executes storage-specific uevent handling and processing
- keeps its own database

· udev builtin command

- bridge between udev and SID with subcommands:
 - sid active
 - returns active, inactive, incompatible
 - sid identify
 - relays uevent with environment to SID
 - requests execution of identification and related routines
 - returns KEY=VALUE results for use in udey rules or to store in udey db
 - sid checkpoint <checkpoint name> [<key> ...]
 - sid version

sid daemon

- layered on top of udev
- executes storage-specific uevent handling and processing
- keeps its own database

· udev builtin command

- bridge between udev and SID with subcommands:
 - sid active
 - returns active, inactive, incompatible
 - sid identify
 - relays uevent with environment to SID
 - requests execution of identification and related routines
 - returns KEY=VALUE results for use in udev rules or to store in udev db
 - o sid checkpoint < checkpoint_name > [< key > ...]
 - o sid version

library interface

- access SID's information store
- subscribe to SID notifications

sid daemon

- layered on top of udev
- executes storage-specific uevent handling and processing
- keeps its own database

udev builtin command

- bridge between udev and SID with subcommands:
 - sid active
 - returns active, inactive, incompatible
 - sid identify
 - relays uevent with environment to SID
 - requests execution of identification and related routines
 - returns KEY=VALUE results for use in udev rules or to store in udev db
 - sid checkpoint <checkpoint name> [<key>...]
 - sid version

library interface

- access SID's information store
- subscribe to SID notifications

• sidctl command line interface

control and access SID and its information store

STORAGE INSTANTIATION DAEMON IDENTIFY STAGES

SID

UDFVD WORKER

11

STORAGE INSTANTIATION DAEMON IDENTIFY STAGES

SID

UDEVD WORKER

STORAGE INSTANTIATION DAEMON IDENTIFY STAGES

• key-value (KV) database with various backends

- key-value (KV) database with various backends
- value types
 - simple
 - vector

- key-value (KV) database with various backends
- value types
 - simple
 - vector
- snapshot separation

- key-value (KV) database with various backends
- value types
 - simple
 - vector
- snapshot separation
- delta synchronization of vector values

- key-value (KV) database with various backends
- value types
 - simple
 - vector
- snapshot separation
- delta synchronization of vector values
- separate key namespaces
 - KV_NS_UDEV (import/export from/to udev)
 - KV_NS_GLOBAL (visible globally)
 - **KV_NS_MODULE** (visible only in specific module)
 - **KV_NS_DEVICE** (visible only when processing specific device)

- key-value (KV) database with various backends
- value types
 - simple
 - vector
- snapshot separation
- delta synchronization of vector values
- separate key namespaces
 - KV_NS_UDEV (import/export from/to udev)
 - KV_NS_GLOBAL (visible globally)
 - **KV_NS_MODULE** (visible only in specific module)
 - **KV_NS_DEVICE** (visible only when processing specific device)
- per-module protection flags
 - KV_PROTECTED (originating module can read-write, others read-only)
 - KV_PRIVATE (originating module can read-write, others unable to access)
 - KV_RESERVED (originating module reserves, others can't take over)

- key-value (KV) database with various backends
- value types
 - simple
 - vector
- snapshot separation
- delta synchronization of vector values
- separate key namespaces
 - KV_NS_UDEV (import/export from/to udev)
 - KV_NS_GLOBAL (visible globally)
 - **KV_NS_MODULE** (visible only in specific module)
 - **KV_NS_DEVICE** (visible only when processing specific device)
- per-module protection flags
 - KV_PROTECTED (originating module can read-write, others read-only)
 - KV_PRIVATE (originating module can read-write, others unable to access)
 - KV_RESERVED (originating module reserves, others can't take over)
- persistence
 - **KV_PERSISTENT** (persist record for next use)

QUESTIONS?

github: https://github.com/prajnoha/sid

freenode: prajnoha on #Ivm

email: prajnoha@redhat.com

THANK YOU!

